PHYS 301 Tutorial #4 — group problem solving

Copies of the inside front and back covers of the Griffiths text are provided on the last
page.

1(a) Use Gauss’s law to show that the magnitude of the electric field at a point P due to a uniformly-
charged flat sheet is given by E = 0/(2¢¢), where o is the charge per unit area. Assume that the

distance from the sheet to P is small compared to the sheet’s length and width.

(b) Next, imagine two parallel sheets separated by distance d that carry equal but opposite charge.
What is the electric field strength between the sheets? What is the electric field strength above and
below the parallel sheets?

(c) In class, we showed when an electric field obeys the following boundary conditions when it

encounters a surface with a charge per unit area o:
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Confirm that your results from (a) and (b) satisfy these boundary conditions.
(d) Calculate the potential different AV between the two sheets.

(e) As you know, the parallel sheets with equal, but opposite, charges form a parallel plate capacitor.

Given that the definition of capacitance is:
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show that the capacitance of a parallel-plate capacitor is given by:
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where A is the area of the plates.
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2. The figure below shows the geometry of a coaxial cable.

= b

The inner conductor, assumed to have a uniform charge per unit length +X has radius a. The outer

conductor, charge per unit length —\, has radius b > a.

(a) Use Gauss’s law to find the electric field in the regions (i) a < s < b and (ii) s > b.
(b) Find the potential difference between the inner and outer conductors.

(c) Find an expression for the capacitance per unit length C, = C'/¢ of the coaxial cable.

3(a) Find the potential a distance s from an infinitely-long straight wire that carries a a uniform
line charge A. Note that, in this problem, because the wire is infinitely long, you cannot assume
that V =0 at s — oo. Arbitrarily set your potential to be zero at s = a and make use of the facts
that: i
AV:V;—Va:—/ E-de,
and: .
E— %
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(b) Compute the gradient of your potential to find the electric field. Compare your answer to what

you got in problem 2(a)(i).
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V() = L/Md#,
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4(a) Starting from:

calculate the potential (i) inside and (ii) outside a uniformly-charged solid sphere of radius R and

total charge q.

(b) Use the potentials from (a) to calculate the electric fields (i) inside and (ii) outside the sphere.

(c) Use:
1
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and your result from (a) to find the energy stored in a uniformly-charged sphere of radius R and

charge q.

5. Check that: . ,
V(r) = —/—p(r) dr’,
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satisfies V2V = —p/eg. Make use of the fact that:

v? (ai) = —4md* (2 ).
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VECTOR DERIVATIVES VECTOR IDENTITIES

Cartesian. dl=dxX+dyy+dzz; dt=dxdydz Triple Products

Gradient:  vi=Lgy 0 0, | (1) A-BxC)=B-(CxA)=C-(AxB)
ax dy 0z
2) AxBxC)=BA-C)—-CA-B)

av avy,  dv
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Cradient: Vit =3 b+ 50t oo 95 ® (1) Vx(fA) = f(V x A) —A x (V)
VxAxB)=B-V)A—(A-V)B+A(V-B)—B(V-A)
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Second Derivatives
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Cylindrical. dl=ds§+sd¢+dzs; dr=sdsdpdz

FUNDAMENTAL THEOREMS
Gradient: Vtzs—;§+%§—t¢3+g—ii
Divergences W5 = 13(5%) " 183% . %vz Gradient Theorem : fab(Vf) -dl= f(b) — f(a)
Divergence Theorem: [(V-A)dt=¢A-da
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BASIC EQUATIONS OF ELECTRODYNAMICS
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FUNDAMENTAL CONSTANTS

Maxwell’s Equations

In general:
1
V-E=—p
€0
V xE = —g
ot
V-B=0
JE
V x B = wol + noeo—
ot
Auxiliary Fields
Definitions :
D= EQE +P
1
H=—B-M
Mo
Potentials
E=-VV — %,
ot

Lorentz force law

F=¢gE+vxB)

Energy, Momentum, and Power

In matter:

f

V'D:,Of

VxE:—g
dt

V-B=0
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VxH= —
Jr+ Y

Linear media:

P=¢x.E, D=cE

1

M=yx,H, H=-B

nm

B=V xA

1 1
Energy: U= —/ <€0E2+ —Bz> dt
2 Ho
Momentum: P=¢ [(ExB)dr

Poynting vector: S = L(E x B)
Mo

Larmor formula: P = ﬂqzaz
(37,44

€0 =8.85 x 10712 C?/Nm?
po =4m x 1077 N/A?

¢ =3.00x 10*m/s

e =1.60x107°C

m =9.11 x 1073 kg

(permittivity of free space)
(permeability of free space)
(speed of light)

(charge of the electron)

(mass of the electron)

SPHERICAL AND CYLINDRICAL COORDINATES

Spherical

x = rsin6 cos ¢
y =rsiné sing
z =rcosf

r=+/x*+y?+z?
6 = tan~! (,/x2 + yz/z)

¢ =tan™' (y/x)
Cylindrical

X = scos¢

y = ssing

z=z

s = /x2+y2
¢ = tan~' (y/x)
Z =2

f(:sinecosqbf'—i—cosecosd)é——sin ¢dA)
y =sin@sin ¢ T + cosOsin ¢ 6 +cosd ¢
7 =cosfr—sinf 6

F =sinfcosp X+ sin fsingy + cosb z
6 = cosfcospX+cosfsingy — sin 02
¢ =—singX+cosgy

X =cos¢§—sinpo
y=sin ¢S+ cosp ¢

i=1

§ =cos¢X+singy

¢ =—sinpX+cosgpy

i=1



